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LETTER TO THE EDITOR

Diffusion on a hypercubic lattice with pinning potential:
exact results for the error-catastrophe problem in
biological evolution
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Institut de Physique Th́eorique, Universit́e de Fribourg, CH-1700, Switzerland

Received 15 December 1995, in final form 1 March 1996

Abstract. In the theoretical biology framework one fundamental problem is the so-callederror
catastrophein Darwinian evolution models. We re-examine Eigen’s fundamental equations by
mapping them into a polymer depinning transition problem in a ‘genotype’ space represented by
a unitary hypercubic lattice{0, 1}d . The exact solution of the model shows that error catastrophe
arises as a direct consequence of the equations involved and confirms some previous qualitative
results.

An important question in the context of Darwinian ‘natural’ selection theory is: how could
complex life evolve and finally reach the structure we can see nowadays by selecting the
fittest species among the huge number of different allowed choices? Could we explain the
mechanism of self-organization (guided evolution) to complex life from basic principles or
is it necessary to consider some other ‘external’ organizing parameter? The numberN of
different realizations of a given virus DNA chain, made of a very long random sequence of
basic units (chemical bases), is typically given byN ≈ 101000. Hence the time needed by
random evolution to ‘explore’ all possible choices before reaching the optimum sequence
(i.e. complex life) is really enormous.

Here we consider a simplified model, that is evolution in a genotype space of dimension
d with a uniquemaster sequence(MS) being the favoured one, i.e. the one corresponding to
individuals with highestfitness. All other sequences are supposed to have the same lower
fitness, which, for sake of simplicity, we will take as unity. Thequasi-species[1] can
‘diffuse’ in this genotype space with a mutation rate per baseµ, generally assumed to be
very small. A so-callederror catastrophearises since increasing the chain lengthd, even
though the master sequenceIm has highest fitness, it can hardly survive evolution. In other
words, we need extremely large fitness forIm or, equivalently, exceedingly small mutation
rate to keep the MS in a population.

The first investigation of this simple model was achieved by Eigen and co-workers [1].
The aim of the present work is to solve the problem exactly and particular attention will be
devoted to the conditions for the occurrence of the error catastrophe.

Natural selection, in Eigen’s model, is described by a simple prototype evolution
equation. The space of configurations, i.e. the genotype space, is constructed from a setI
of sequences of uniform length comprisingd monomeric units of whichk classes (chemical
bases) can exist. The number of different sequences is the cardinality of the setI, and
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obviously given byN = |I| = kd . In the simplest case (the one we will consider in
the following) k = 2 and then sequences are made of binary units:Ii = ai{ai = {0, 1},
∀i = 1, . . . , d}.

One can then introduce a continuous-time master equation for the concentration of
individuals xi [1]. The main result is that the target of selection is a species defined by
the dominant, that is the most probable, sequenceIm (MS) [2–4], which is reached after
finite time in a self-organized way, i.e. without any external fine tuning. Some heuristic
arguments show that if theexcess production rate† of the master sequenceAm is too small,
when compared with those of the mutantsAk 6=m, then error catastrophearises [5]: no
convergence to theIm sequence takes place and the dynamics is dominated by a random
creation and annihilation of all possible individuals in the setI.

Our main goal in this letter is the following. We solve the evolution equations exactly,
by means of a mapping to a polymer localization problem, and prove thaterror catastrophe
always occurs in Eigen’s model: the ratioa = Am/Ak 6=m necessary to self-organize the
process to the master sequence is exponentially big in the sequence lengthd.

We first define our system and the space of configurations. Let us consider ad-
dimensional hypercubic unitary lattice� = {0, 1}d , mimicking a genotype space. Each
side is made of only two points representing binary units. Each point of� has a one-to-one
correspondence with a sequenceIi (i = 1, |I|) since the cardinality ofI is equal to the
number of points of� (we takek = 2).

The discretized time version of the rate equation, in the polymer context, describes a
depinning transition [6]. A polymer, directed along the time axis, moves in a(d + 1)-
dimensional space,�×N , subjected to a contact energy term with energy gain−u < 0 per
step of the interface located at the wall. At finite temperaturesT > 0 the polymer fluctuates
in order to increase its configurational entropy but large fluctuations are unlikely [7].

The polymer is completely specified by the Hamiltonian

HL({h}(i)) =
L∑

i=1

(J |h(i) − h(i−1)| − uδh(i),0) (1)

and the partition function [7]

ZL(x) =
∑
{h}

exp{−HL({h}(i))/T } (2)

where h(i) is the position of the polymer in� at time i. Overhangs are forbidden and
the RSOS condition is imposed, that is|h(i) − h(i−1)| can be zero or one. This condition
means that in one time step (i → i + 1) mutations are possible only between species with
Hamming distance equal to one.

Let us consider the transfer matrix (see also [8])

ZL+1(x) = (1 − (a − 1)δx,0)

( d∑
i=1

tZL(x + e(i)) + (1 − dt)ZL(x)

)
(3)

where we have introduced the unitary vectorse(i) = (0, . . . , 1, . . . , 0) as those having a
‘1’ bit in the ith position. Moreover, we have defined the parametersa = exp(u/T ) and
t = exp(−J/T ).

Actually we should say that equation (3) defines a transfer matrix which is equivalent
to that associated with Hamiltonian (1) apart from a multiplicative constant which does not

† The excess production rateAi of the sequence (or species)Ii describes autocatalytic amplification during
reproduction (see also [5]).
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affect our final result. The reason why we use this form is that it is the discretized-time
version of Eigen’s original rate equation (in the hypothesis of vanishing average of deaths
per unit time and of unitary excess production rates for all sequences except the master
one: Ak 6=m = 1, Am = a; see also [5]). In fact, in this scheme thehopping constant
t ∈ [0, 1] is the probability that, given a pair of neighbouring sites, a ‘jump’ occurs between
them in one time step. As a consequencedt represents the probability that a mutation of
a given individual takes place, while 1− dt is the probability of exact replication. In the
usual notation the last quantity is given byqd sinceq is defined as the probability of exact
replication of one base in the DNA chain.

Our goal is to find the spectrum of the matrix defined by (3), or, at least, its spectral
radius (i.e. the maximum eigenvalue) since it gives the only significant contribution to the
free energy density (per unit length)f in the thermodynamic limitL → ∞.

The knowledge of the spectral radius as a function of the free parameters{a, d, t} of
the system is then what we need to show the appearance of the error catastrophe in Eigen’s
model. The argument is straightforward. One can prove that if the polymer is in the localized
phase, then the spectral radiusε is bigger than one, while it attains unity in the unbounded
state [9]. This result can be easily mapped into the biological framework. In fact, let us
suppose that for a given set{a, d, t} the polymer is in the localized (delocalized) phase:
this can be equivalently expressed by saying that evolution brings species preferentially to
(apart from) the master sequence. Therefore the error-catastrophe problem is reduced to
the search for the critical pinninga necessary to localize the polymer for fixed values ofd

and t .
In this simplified model we allow, of course, only one mutation in a single time step.

This hypothesis is indeed not an approximation nor a limit of our approach. One can
simply prove that allowing more than one mutation per time step corresponds to taking
higher powersn of the matrix (3). With a simple redefinition of the time units this new
linear operator will take into account multiple jumps between points of� in one step.
However, in what follows, we will show that our result can be well associated with the set
of eigenvectors of our transfer matrix (3), which does not depend, as is obvious, on the
powern.

We now introduce a dual space representation to have periodic boundary conditions in
all directions:

ZL(x) =
∑

k={0,1}d
(−1)x·kZL(k) ZL(k) = 1/2d

∑
x={0,1}d

(−1)x·kZL(x).

The summation is over the 2d possible binary realizations ofk and x. In the dual space
equation (3) takes the form

ZL+1(k) = s(k)ZL(k) + a + 1

2d

∑
q={0,1}d

s(q)ZL(q) (4)

with s(q) = t
∑d

i=1(−1)qi + 1− dt . Our goal is then to solve a 2d -dimensional eigenvalue
for the dual transfer matrixM acting on the right-hand side of equation (4). After some
algebraic manipulation one can show that the spectrum of the matrix is given by the 2d

solutions of the following equation (in the thermodynamic limit we focus our attention only
on the largest eigenvalue of the spectrum):

a − 1

2d

∑
k={0,1}d

s(k)

ε − s(k)
= 1. (5)



L252 Letter to the Editor

We will list below, without proof, a series of exact results; all mathematical details will
be given elsewhere [9]. The maximum eigenvalue of the transfer matrixM is alwaysnon-
degenerate, as a consequence of the Frobenius–Perron theorem, and has a corresponding
positive right eigenvector. We can useM to calculate, as a first approximation, the bounds
for the spectral radiusρ(M) = ε by means of some theorems on positive matrices [10].

We note that, strictly speaking, one could have a phase transition for polymer localization
only in the limit d → ∞. For finite d the situation is less clear. At any finite dimension
d the total number of accessible sites is finite and equal to 2d . As a consequence our
polymer never wanders at infinity even in the thermodynamic limitt → ∞. However, if
the pinning strength is not big enough, the polymer is ‘rough’ in the sense that it can visit
all accessible configuration space up to the maximum size allowed for that fixedd. On
the other hand, in the ‘pinned’ phase, the transversal localization length` within which
the polymer is confined to the origin is independent of the linear sizeL and is always
finite (even atd → ∞). The two different behaviours take place at a given characteristic
valueucrit of the pinning potential which will be our definition of criticality. The following
statements are equivalent: in the unbounded state one hasε → 1+, vanishing free energy
per unit lengthf , and constant componentsZ(i) of the positive eigenvector associated with
ε. The opposite applies in the localized phase.

Now we can turn our attention to equation (5). The idea is to transform it into a
simpler formula forε by means of a Feynman integral representation. The result is that the
maximum eigenvalue is given by the only real solution of the following implicit equation:

a

a − 1
= ε

∫ ∞

0
e−(ε−1+dt)u(cosh(ut))d du = 2F1

(
−d; 1; ε − 1

2t
+ 1; 1

2

)
. (6)

We note that the integral diverges iffε = 1. Therefore if the attractive potential at the
origin is omitted (a = 1), the maximum eigenvalue must be unitary, too. Then the free
energyf vanishes and we attain a delocalized phase, as expected. In the above formula
2F1(−a; b; c; d) is the usual hypergeometric series of negative argument−a [11].

We defineI (d; ε, t) the integral in (6). The basic results are: (i)ε(a) is a convex
non-decreasing function ofa, and (ii) for largea, the functionε(a; d, t) is linear in a:
ε ' (1 − dt)a, (a � 1). The shape ofεI (d; ε, t) is shown in figure 2 as a function ofd.
Parameters{t, ε} are fixed in the physical range.

A detailed analysis of the asymptotic development forI (d; ε, t) at large d needs
particular attention, since we should properly take into account the conditiondt 6 1.
This means that both the limitsd → ∞ and t → 0 must be performedsimultaneouslyin
the development in such a way thatα = dt is constant. The result of the calculation is

a

a − 1
= ε

ε − 1 + dt
+ (dt)2ε

d(ε − 1 + dt)3
+ 3(dt)4ε

d2(ε − 1 + dt)5
+ O

(
1

d3

)
. (7)

This implicit algebraic equation can be solved for the maximumε and the result is
compared with the exact calculation performed by numerically finding the spectral radius
of M for a given set of parameters{d, t, a} (see figure 1).

The shape of the eigenvector corresponding toε is relevant from the point of view of the
depinning transition. It is represented by the sum of its componentsm(d; a, ε, t) = ∑

i Z(i).
One can prove that

m(d; a, ε, t) = ε

ε − 1

a − 1

a
= 1

ε − 1
I (d; ε, t)−1. (8)

As a direct consequence we have that (see equation (9) below) lima→1+ m = 2d and
lima→∞ m = 1. Figure 1 shows the shape ofm comparing the numerical result obtained
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Figure 1. Main figure: maximum eigenvalue of the transfer matrixM plotted against the
pinning strengtha. Numerical data, full line; analytical result (up to order O(1/d3)), circles.
The dashed lines are the bounds forε obtained from the transfer matrix. Inset: log[m(a)] plotted
againsta. In all casesd = 100, t = 0.003. Numerical data, full line; analytical result, circles.

by the transfer matrix and the analytical one from the asymptotic development truncated
at order O(1/d3). The coincidence is very good. Our depinning transition can be easily
studied in terms ofµ = log(m). In the unbounded state the polymer wanders in all the
accessible space of� and thenm reaches its maximum value, while ifa is very highµ

converges towards zero.
If one asks for the critical pinningac necessary to localize the polymer on the origin,

we should fix the parametersd and t , with the constraintdt 6 1, necessary to preserve
the probabilistic interpretation, and search for the maximum alloweda associated with an
eigenvalueε ‘sufficiently’ close to one. We specify this statement by considering as values
close to one those which differ from unity for a vanishing quantity in the limitd → ∞.

This definition can be justified, and made rigorous, by noting that fora → 1+

equation (5) is dominated by only one term in the sum and one gets the result (hereε

stands for the maximum eigenvalue ofM)

a

a − 1

a→1+
' 1

2d

ε

ε − 1
or ε ' 1 + a − 1

1 + a(2d − 1)
= 1 + δd . (9)

Then we can properly defineac = supa∈(1,∞){a|ε 6 1 + δd}.
The conclusion is that, ifa is below ac, ε converges exponentially to 1+ in the limit

d → ∞. Now we will prove the main physical result of this article, namely that the
threshold is the critical pinningac necessary to localize the polymer and that we have, at
criticality, ∀d

ac = 1 + δd

1 − dt
⇐⇒ dc ' − loga

logq
(10)

whereδd is a function tending to zero as O(2−d), (see equation (9)).
The proof is rather simple if we look at the graphical interpretation of equation (6), see

also figure 2. For a given set{d, t, a} in the physical range, the non-degenerateε is found
by intersecting the curveζ = εI (d; a, t) with the horizontal linea/(a−1) = A = constant.
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Figure 2. Shape ofI (d; ε, t) and of a/(a − 1) plotted againstd (see text). The dashed line
gives the asymptotic limit ofI for large dimensionsd at ε → 1+.

Figure 3. Critical dimensiondc plotted against pinning strengtha for two distinct values
of t . Lower curve: t = 10−2; upper curve: t = 10−3. Full lines represent the function
dc = t−1(1 − 1/a) (see text), circles and squares the numerical data from the transfer matrix.

As we showed above,ζ asymptotically converges toK = ε/(ε−1+dt) for larged and then
to 1/dt in the extreme situationε → 1+. If a is too big, namelyA < K, for a fixedε, then
no solutions can be found sinceA is belowζ . In that case a solution always exists but for
a biggerε, necessary to lowerK below A. As a consequence, the criticalac following our
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definition, can be found by asking for the maximum alloweda compatible with a solution
of the formε = 1 + δd . The answer is now obvious and it is given by equation (10).

Figure 3 shows the critical dimensiondc as a function of the pinninga for two values
of t . The coincidence between formula (10) and the numerical results is remarkable.

In conclusion, in this letter we have re-examined the evolution equations introduced by
Eigen and co-workers in order to mimic Darwinian natural selection in biological evolution.
A particle diffusing on the� space and subjected to an attractive wall localized at the
origin can be viewed, in the biological context, as a reproduction process in the genotype
space. The mutation ratet and the excess production rateAi for a given DNA sequence are
easily mapped into other physical quantities for the polymer localization problem. We have
proved that the so-called error-catastrophe problem naturally arises as a consequence of the
model introduced: in other words, for given copying fidelityq and fitnessa, equation (10)
represents an upper limit for the genome length.

This work has been supported by the Swiss National Fund for the Scientific Research.
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