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LETTER TO THE EDITOR

Diffusion on a hypercubic lattice with pinning potential:
exact results for the error-catastrophe problem in
biological evolution

S Galluccio, R Graber and Y-C Zhang
Institut de Physique Téorique, Universé de Fribourg, CH-1700, Switzerland

Received 15 December 1995, in final form 1 March 1996

Abstract. In the theoretical biology framework one fundamental problem is the so-aaited
catastrophein Darwinian evolution models. We re-examine Eigen’s fundamental equations by
mapping them into a polymer depinning transition problem in a ‘genotype’ space represented by
a unitary hypercubic latticé, 1}¢. The exact solution of the model shows that error catastrophe
arises as a direct consequence of the equations involved and confirms some previous qualitative
results.

An important question in the context of Darwinian ‘natural’ selection theory is: how could
complex life evolve and finally reach the structure we can see nowadays by selecting the
fittest species among the huge number of different allowed choices? Could we explain the
mechanism of self-organization (guided evolution) to complex life from basic principles or
is it necessary to consider some other ‘external’ organizing parameter? The ninhdjer
different realizations of a given virus DNA chain, made of a very long random sequence of
basic units (chemical bases), is typically given By~ 10'°°°. Hence the time needed by
random evolution to ‘explore’ all possible choices before reaching the optimum sequence
(i.e. complex life) is really enormous.

Here we consider a simplified model, that is evolution in a genotype space of dimension
d with a uniguemaster sequenc@MS) being the favoured one, i.e. the one corresponding to
individuals with highesfitness All other sequences are supposed to have the same lower
fithess, which, for sake of simplicity, we will take as unity. Theasi-specieq1] can
‘diffuse’ in this genotype space with a mutation rate per basgenerally assumed to be
very small. A so-callecerror catastrophearises since increasing the chain lendtheven
though the master sequentg has highest fitness, it can hardly survive evolution. In other
words, we need extremely large fitness fgror, equivalently, exceedingly small mutation
rate to keep the MS in a population.

The first investigation of this simple model was achieved by Eigen and co-workers [1].
The aim of the present work is to solve the problem exactly and particular attention will be
devoted to the conditions for the occurrence of the error catastrophe.

Natural selection, in Eigen’s model, is described by a simple prototype evolution
equation. The space of configurations, i.e. the genotype space, is constructed frofh a set
of sequences of uniform length comprisiddggnonomeric units of whiclt classes (chemical
bases) can exist. The number of different sequences is the cardinality of tde aed
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obviously given byN = |Z| = k¢. In the simplest case (the one we will consider in
the following) k = 2 and then sequences are made of binary units= a;{a; = {0, 1},
Vi=1,...,d}.

One can then introduce a continuous-time master equation for the concentration of
individuals x; [1]. The main result is that the target of selection is a species defined by
the dominant, that is the most probable, sequehcéMS) [2—4], which is reached after
finite time in a self-organized way, i.e. without any external fine tuning. Some heuristic
arguments show that if thexcess production rateof the master sequencg, is too small,
when compared with those of the mutamg.,,, then error catastrophearises [5]: no
convergence to thé, sequence takes place and the dynamics is dominated by a random
creation and annihilation of all possible individuals in the Bet

Our main goal in this letter is the following. We solve the evolution equations exactly,
by means of a mapping to a polymer localization problem, and proveethatcatastrophe
always occurs in Eigen's model: the ratio= A,,/Ay., necessary to self-organize the
process to the master sequence is exponentially big in the sequencedength

We first define our system and the space of configurations. Let us consider a
dimensional hypercubic unitary lattic® = {0, 1}, mimicking a genotype space. Each
side is made of only two points representing binary units. Each poifi lods a one-to-one
correspondence with a sequenge(i = 1, |Z|) since the cardinality of is equal to the
number of points of2 (we takek = 2).

The discretized time version of the rate equation, in the polymer context, describes a
depinning transition [6]. A polymer, directed along the time axis, moves @ & 1)-
dimensional space x N, subjected to a contact energy term with energy gain< 0 per
step of the interface located at the wall. At finite temperatdres O the polymer fluctuates
in order to increase its configurational entropy but large fluctuations are unlikely [7].

The polymer is completely specified by the Hamiltonian

L
HL((h}D) =) (IO — RP] — usho o) €Y
i=1
and the partition function [7]
Zi(x) =) exp(—H.({h}")/T) @)
{h}

where b is the position of the polymer i®2 at timei. Overhangs are forbidden and
the RSOS condition is imposed, that|is® — h¢~Y| can be zero or one. This condition
means that in one time step i + 1) mutations are possible only between species with
Hamming distance equal to one.

Let us consider the transfer matrix (see also [8])

d
Zra@) =1 —(@— 180 ( Yo tZi@+eV)+1-dnZ, (w)) 3
i=1

where we have introduced the unitary vectef8 = (0,...,1,...,0) as those having a
‘1’ bit in the ith position. Moreover, we have defined the parametets exp(u/T) and
t=exp(—J/T).

Actually we should say that equation (3) defines a transfer matrix which is equivalent
to that associated with Hamiltonian (1) apart from a multiplicative constant which does not

1 The excess production raté; of the sequence (or species) describes autocatalytic amplification during
reproduction (see also [5]).
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affect our final result. The reason why we use this form is that it is the discretized-time
version of Eigen’s original rate equation (in the hypothesis of vanishing average of deaths
per unit time and of unitary excess production rates for all sequences except the master
one: Ayzy = 1, A,y = a; see also [5]). In fact, in this scheme thepping constant

t € [0, 1] is the probability that, given a pair of neighbouring sites, a ‘jump’ occurs between
them in one time step. As a consequenceaepresents the probability that a mutation of

a given individual takes place, while-1d: is the probability of exact replication. In the
usual notation the last quantity is given by sincegq is defined as the probability of exact
replication of one base in the DNA chain.

Our goal is to find the spectrum of the matrix defined by (3), or, at least, its spectral
radius (i.e. the maximum eigenvalue) since it gives the only significant contribution to the
free energy density (per unit length) in the thermodynamic limif. — oo.

The knowledge of the spectral radius as a function of the free paranietets:} of
the system is then what we need to show the appearance of the error catastrophe in Eigen’s
model. The argument is straightforward. One can prove that if the polymer is in the localized
phase, then the spectral radiugs bigger than one, while it attains unity in the unbounded
state [9]. This result can be easily mapped into the biological framework. In fact, let us
suppose that for a given séi, d, t} the polymer is in the localized (delocalized) phase:
this can be equivalently expressed by saying that evolution brings species preferentially to
(apart from) the master sequence. Therefore the error-catastrophe problem is reduced to
the search for the critical pinning necessary to localize the polymer for fixed valuesg! of
andr.

In this simplified model we allow, of course, only one mutation in a single time step.
This hypothesis is indeed not an approximation nor a limit of our approach. One can
simply prove that allowing more than one mutation per time step corresponds to taking
higher powers: of the matrix (3). With a simple redefinition of the time units this new
linear operator will take into account multiple jumps between point£20in one step.
However, in what follows, we will show that our result can be well associated with the set
of eigenvectors of our transfer matrix (3), which does not depend, as is obvious, on the
powern.

We now introduce a dual space representation to have periodic boundary conditions in
all directions:

Zi@ = Y “D"Zuk) Zuk) =1/2' Y (-DTFZ(@).

k={0,1}¢ x=({0,1}¢

The summation is over the? Dossible binary realizations & andz. In the dual space
equation (3) takes the form

1
Zatk) =s®Zm + 0= Y s@2@ @)

q={0,1}

with s(q) = th’:l(—l)‘ff +1—dt. Our goal is then to solve & 2limensional eigenvalue
for the dual transfer matri¥M acting on the right-hand side of equation (4). After some
algebraic manipulation one can show that the spectrum of the matrix is given by the 2
solutions of the following equation (in the thermodynamic limit we focus our attention only
on the largest eigenvalue of the spectrum):

a—1 s(k) _
2d Z e —s(k) L ©®)

k={0,1}
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We will list below, without proof, a series of exact results; all mathematical details will
be given elsewhere [9]. The maximum eigenvalue of the transfer m&driis alwaysnon-
degeneratgas a consequence of the Frobenius—Perron theorem, and has a corresponding
positive right eigenvector. We can udd to calculate, as a first approximation, the bounds
for the spectral radiug (M) = ¢ by means of some theorems on positive matrices [10].

We note that, strictly speaking, one could have a phase transition for polymer localization
only in the limitd — oco. For finite d the situation is less clear. At any finite dimension
d the total number of accessible sites is finite and equal?to & a consequence our
polymer never wanders at infinity even in the thermodynamic lmit co. However, if
the pinning strength is not big enough, the polymer is ‘rough’ in the sense that it can visit
all accessible configuration space up to the maximum size allowed for that dixe@in
the other hand, in the ‘pinned’ phase, the transversal localization lehgttthin which
the polymer is confined to the origin is independent of the linear sizend is always
finite (even atd — o0). The two different behaviours take place at a given characteristic
valueuc; of the pinning potential which will be our definition of criticality. The following
statements are equivalent: in the unbounded state one hadl™, vanishing free energy
per unit lengthf, and constant componeritgi) of the positive eigenvector associated with
e. The opposite applies in the localized phase.

Now we can turn our attention to equation (5). The idea is to transform it into a
simpler formula fore by means of a Feynman integral representation. The result is that the
maximum eigenvalue is given by the only real solution of the following implicit equation:
e—1 1

a [o.¢]
- e T coshun)) du = oFy [ —d; L —— + 1 > ). 6
a—1 8/0 (costur))” du = 2y 2t + 2 ©

We note that the integral diverges #f = 1. Therefore if the attractive potential at the
origin is omitted ¢ = 1), the maximum eigenvalue must be unitary, too. Then the free
energy f vanishes and we attain a delocalized phase, as expected. In the above formula
2F1(—a; b; ¢; d) is the usual hypergeometric series of negative argumenfl1].

We definel(d; ¢, t) the integral in (6). The basic results are: {iu) is a convex
non-decreasing function af, and (ii) for largea, the functione(a; d, ¢) is linear ina:

e >~ (1 —dt)a, (a > 1). The shape ofl(d; ¢, t) is shown in figure 2 as a function af.
Parametergt, ¢} are fixed in the physical range.

A detailed analysis of the asymptotic development 1@t/; ¢,¢) at larged needs
particular attention, since we should properly take into account the conditiog 1.
This means that both the limits — oo ands — 0 must be performedimultaneouslyin
the development in such a way that= dt is constant. The result of the calculation is

2 4
a  _ & (dt)“e 3(dt)% +O<1>. R
a—1 e—1+4+dt dEe—-1+dt)} d?(s—1+dr)° d3
This implicit algebraic equation can be solved for the maximurand the result is
compared with the exact calculation performed by numerically finding the spectral radius

of M for a given set of parametefd, r, a} (see figure 1).

The shape of the eigenvector corresponding irelevant from the point of view of the
depinning transition. It is represented by the sum of its compome@isa, ¢,1) = Y, Z(i).
One can prove that

~1 1
m(d;a,e0) = 17— I(d;e, )L @)
e—1 a e—1

As a direct consequence we have that (see equation (9) below), Jim: = 2¢ and
lim,,m = 1. Figure 1 shows the shape af comparing the numerical result obtained
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Figure 1. Main figure: maximum eigenvalue of the transfer mati{ plotted against the
pinning strengthu. Numerical data, full line; analytical result (up to ordet1®)), circles.
The dashed lines are the bounds dabtained from the transfer matrix. Inset: leg)] plotted
againsta. In all cases/ = 100,+ = 0.003. Numerical data, full line; analytical result, circles.

by the transfer matrix and the analytical one from the asymptotic development truncated
at order Q1/d®). The coincidence is very good. Our depinning transition can be easily
studied in terms ofu = log(m). In the unbounded state the polymer wanders in all the
accessible space @& and thenm reaches its maximum value, while df is very high u
converges towards zero.

If one asks for the critical pinning. necessary to localize the polymer on the origin,
we should fix the parametets and ¢, with the constraintdr < 1, necessary to preserve
the probabilistic interpretation, and search for the maximum allowedsociated with an
eigenvalues ‘sufficiently’ close to one. We specify this statement by considering as values
close to one those which differ from unity for a vanishing quantity in the linit- oco.

This definition can be justified, and made rigorous, by noting thatafor> 1"
equation (5) is dominated by only one term in the sum and one gets the results(here
stands for the maximum eigenvalue .61)

a as1v1 ¢ a—1
o1 " pia_1 or 5_1+m_1+8d. 9
Then we can properly defing = sup,.; ., {ale <1+ 34}

The conclusion is that, if: is belowac, € converges exponentially to™1in the limit
d — oo. Now we will prove the main physical result of this article, namely that the
threshold is the critical pinning. necessary to localize the polymer and that we have, at
criticality, vd

1464 loga
= <— d.>~—
1—dr ¢ logq

ac (10)
wheresd, is a function tending to zero as(®?), (see equation (9)).

The proof is rather simple if we look at the graphical interpretation of equation (6), see
also figure 2. For a given séd, 7, a} in the physical range, the non-degenerais found
by intersecting the curve = ¢1(d; a, t) with the horizontal linex/(a —1) = A = constant.
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Figure 2. Shape ofl(d; ¢,t) and ofa/(a — 1) plotted against/ (see text). The dashed line
gives the asymptotic limit of for large dimensiong ate — 1%.

Figure 3. Critical dimensiond; plotted against pinning strength for two distinct values
of . Lower curve: + = 1072; upper curve:r = 1073. Full lines represent the function
de = 171(1 - 1/a) (see text), circles and squares the numerical data from the transfer matrix.

As we showed above, asymptotically converges t& = ¢/(¢ —1+dt) for larged and then
to 1/dr in the extreme situation — 17*. If a is too big, namelydA < K, for a fixede, then
no solutions can be found sinceis below¢. In that case a solution always exists but for
a biggere, necessary to lowek below A. As a consequence, the critical following our
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definition, can be found by asking for the maximum allowedompatible with a solution
of the forme = 1+ §,. The answer is now obvious and it is given by equation (10).

Figure 3 shows the critical dimensiely as a function of the pinning for two values
of . The coincidence between formula (10) and the numerical results is remarkable.

In conclusion, in this letter we have re-examined the evolution equations introduced by
Eigen and co-workers in order to mimic Darwinian natural selection in biological evolution.
A particle diffusing on the2 space and subjected to an attractive wall localized at the
origin can be viewed, in the biological context, as a reproduction process in the genotype
space. The mutation rateand the excess production rate for a given DNA sequence are
easily mapped into other physical quantities for the polymer localization problem. We have
proved that the so-called error-catastrophe problem naturally arises as a consequence of the
model introduced: in other words, for given copying fidelityand fithess:, equation (10)
represents an upper limit for the genome length.

This work has been supported by the Swiss National Fund for the Scientific Research.
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